

Drifter

Drifter is a framework to help provision developer boxes using Ansible
and Vagrant.

Goals

	Streamline our project setups

	Ease the “entry cost” for a new squad member

	Easy to use

	Lean: small codebase, easy to maintain and extend, focus only on
Debian and Ubuntu

	Be adopted by Liip as a whole

The idea behind the framework

The idea is to have a common ground for each project that can be
improved over time, each project benefiting from the improvements.

This repository aims to contain multiples Ansible roles to manage the
various part of the development stack needed to work on the various
projects of Liip. If a someone need new roles, it is highly recommended
that they are added to the common pool if they are deemed reusable.

Each squad can tailor its box to its need by modifying the Ansible
playbook which should ultimately only contain role inclusion to maximize
reuse.

When installed, Drifter creates a parameters file to hold various
information about your project, a playbook file where you can choose
what to install and finally a Vagrantfile where you can modify some
Vagrant related parameters before the “main” Vagrantfile is included.
This should offer enough flexibility for every project.

What this framework is not ?

This framework does not aim to provide a way to deploy staging and
production servers for your project. The roles are written with a
development box in mind and are thus not fit for server provisioning.
There are absolutely no security issues taken into consideration.

However, if your server is using a Debian based OS based on the stable
release, both configurations should be close enough so that you won’t
run into issues.

Intended Public

This project was first and foremost created to be used inside of Liip,
but you are more than welcome to use it for personal projects or
anywhere else you’d like to.

Getting Started

	Requirements
	Install Requirements

	Usage

	Customization

	Contributing

Roles

	System Roles
	Base

	Git

	Supervisor

	tmpfs

	SSL

	SSH

	Redis

	RabbitMQ

	LogStash

	Webserver Roles
	Apache

	NGinx

	Database Roles
	MySQL

	PostgreSQL

	PostGIS

	MemCached

	PHP Roles
	PHP

	PHP-Apache

	PHP-FPM

	PHP-XDebug

	PHP-Redis

	PHP-MemCached

	Composer

	PhiVE

	Python Roles
	Python

	Virtualenv

	Django

	Ruby Roles
	Ruby

	Rails

	Java Roles
	Java

	JDK

	Maven

	Solr

	ElasticSearch

	Webpack
	Installation

	Default tasks

	Loading assets

	Gulp Role
	Parameters

	Default tasks

	Browser Roles
	Firefox

	Chrome

	PhantomJS

	Example usage with pytest and splinter

	Other Roles
	Ruby

	NodeJS

	OpenLDAP

	RMT - Release Management Tool

	Redis

	Gitlab CI

Tips & Tricks

	PHP

	CI

Other Info

	Running and writing tests
	Running a specific test / debugging

	Passwordless tests running

	The future ?

	Create boxes
	Current way

	Other way (older, may still work)

	Migration instructions
	Version 2.0

	Version 1.0

	Version 0.1.0 to 0.2.0

Requirements

	Vagrant >= 1.8.4

	Git >= 1.0

You also need a virtualization solution, either one of these:

	Virtualbox >= 4.3

	LXC >= 1.0 & vagrant-lxc >= 1.0.0.alpha.2

Optional dependencies:

	vagrant-hostmanager [https://github.com/devopsgroup-io/vagrant-hostmanager]
A Vagrant plugin that manages /etc/hosts files. (will be
automatically used if installed, make sure it’s at least 1.5.0 if you
have it)

Install Requirements

Debian Stretch (testing) and Ubuntu Xenial 16.04

Open a terminal and run:

sudo apt-get install vagrant vagrant-lxc
vagrant plugin install vagrant-hostmanager

Older Debian and Ubuntu versions

Go to https://www.vagrantup.com/downloads.html to download and install
the latest Vagrant version. Then open a terminal and run:

sudo apt-get install lxc redir # this is needed for LXC provider
vagrant plugin install vagrant-lxc vagrant-hostmanager

Mac OS X

Download and install
https://www.vagrantup.com/downloads.html.

Download and install
https://www.virtualbox.org/wiki/Downloads.

Then open a terminal and run:

vagrant plugin install vagrant-hostmanager

You can also use cask to help with the installation::

brew cask install vagrant virtualbox

Windows

Install Virtualbox and Vagrant (>= 1.8.4) using the binaries available
on their respective websites.

Also make sure that core.autocrlf is set to input (recommended)
or at least true so that you don’t get issues with Windows
line-endings in the files that are in your box. You can set it by
running the following command:

git config --global core.autocrlf input

For example if you get the following error when trying to provision the
box:

TASK [base : ensure base packages are installed] *******************************

failed: [default] (item=[u'locales', u'procps', u'command-not-found', u'bash-completion', u'zsh', u'bzip2', u'unzip', u'vim', u'ack-grep', u'highlight', u'libxml2-utils', u'build-essential', u'wget', u'openssh-server', u'sudo', u'imagemagick', u'iputils-ping', u'ncurses-term', u'python-pycurl']) => {"failed": true, "item": ["locales", "procps", "command-not-found", "bash-completion", "zsh", "bzip2", "unzip", "vim", "ack-grep", "highlight", "libxml2-utils", "build-essential", "wget", "openssh-server", "sudo", "imagemagick", "iputils-ping", "ncurses-term", "python-pycurl"], "module_stderr": ">>> /etc/sudoers.d/sudo-passwordless: syntax error near line 1 <<<\nsudo: parse error in /etc/sudoers.d/sudo-passwordless near line 1\nsudo: no valid sudoers sources found, quitting\nsudo: unable to initialize policy plugin\n", "module_stdout": "", "msg": "MODULE FAILURE", "parsed": false}

That’s because the sudoers file that gets copied in the box has the
wrong format. Enabling core.autocrlf will fix the issue.

Usage

Drifter is going to be installed into your project as a git submodule.
So if your project is not using Git as VCS, start by creating a git
repo:

cd my-project && git init

Then to install Drifter, simply run the following command:

curl -sS https://raw.githubusercontent.com/liip/drifter/master/install.sh | /bin/bash

This will create a Vagrantfile in your root and a virtualization
folder containing configuration files. You now have to follow those two
steps:

	edit virtualization/parameters.yml to set parameters related to
your project

	edit virtualization/playbook.yml to configure what to install in
your box

You now just have to launch your Vagrant box and start hacking!:

vagrant up

Customization

You can customize what seems to us to be the most important options
through two files:

	virtualization/parameters.yml for all project related parameters.
Any value in this file will be passed to Ansible as a variable. You
can override any role default values through this file. You can find
details about possible parameters and values later in this
documentation.

	virtualization/playbook.yml for provisioning. You can control
which roles are used to build your box. This allows you to control
what is installed in your box.

If those two mechanisms are not enough for you, you can also modify the
Vagrantfile, but be aware that the risk of botching things up is far
greater.

Currently you do not have a lot of control, but we will glad to add
anything making sense to this file. Feel free to ask and we will comply
;)

Contributing

Before publishing your contributions please test your roles with the
playground. To do so, go to the playground directory, enable any
role you need in playbook.yml and set any parameter you want in
parameters.yml and then run vagrant up. The box will use the
roles of your working copy.

Please don’t commit any change to the playground, unless you’re fixing
something in the playground.

System Roles

Base

This roles installs various useful software like vim, ack-grep, etc. It
also put some configuration files of the vagrant user home directory.

It should always be included to have a common environment in all vagrant
boxes.

Git

Install Git and some sane configuration and sync the username and e-mail
from the host.

Fancy-diff [https://github.com/so-fancy/diff-so-fancy] is also
installed by default and you can opt-in to sync your git configuration
on each vagrant up.

Parameters

	fancy_diff : install fancy-diff

	sync_git_with_host : sync your host git config on each
vagrant up

Supervisor

Install Supervisor so that you can manage long lived processes inside
the box. A config file based on the parameters is also created for your
service.

The service are automatically started on boot and restarted if they
fail.

If you need multiple services, just include the role multiple times with
the various parameters.

Parameters

	service_name : name of the service

	user : user to use to launch the service

	command : the command to launch

	root_directory : the base directory for the service

	environment_vars : environment vars you want to set

tmpfs

Configure a path to be mounted as a tmpfs (ie : in memory filesystem).

This can be used to speed up application, for example by putting their
log directory in memory thus avoiding costly network transfers for
shared directories.

Parameters

	mount_path : the path to replace with a tmpfs

SSL

If you set the ssl parameter to true in your parameters.yml
file, ansible will create a Certification Authority (CA) and then create
and sign SSL certificates for all hosts configured for your project.

The CA certificate will then be copied to your project
root_directory. If you add this certificate to your trust store, you
should be able to access your websites with HTTPS without any error
messages from most browsers.

If the role is activated, both Apache and NGinx will be configured to
use the created certificates.

WARNING: if the certificate is regenerated because you did a
vagrant destroy or the hostname changed, you will need to re import
the CA certificate into your trust store and in the meantime you might
get errors from your browser. Chrome for example produce a pretty
confusing error message about an attacker trying to steal your
credentials.

SSH

Disable SSH strict host key checking if ssh_no_stricthostkeychecking
is set to true in the parameters.

Also add the github and gitlab.liip.ch host key to the known_hosts
file.

Parameters

	ssh_no_stricthostkeychecking : if set to true, disable SSH
strict host key checking

Redis

To be completed.

RabbitMQ

To be completed.

LogStash

Currently only installs LogStach without any kind of configuration or
nothing. This role is not usable as is.

Parameters

	logstash_version: version to install, defaults to 2.3

Webserver Roles

Apache

This roles installs Apache and the required virtual host configuration
for your project.

Except for a static website, it should not be used directly because it
is automatically included by other roles, for example PHP-Apache.

Parameters

	web_directory : Root directory for the virtual host, defaults to
root_directory.

	ssl : Whether to activate HTTPS vhost, defaults to false. If enabled,
the generated CA will be copied to the project directory.

NGinx

Install the NGinx web server and configure a virtual host based on the
given site template. Except if you need to serve only static files, you
should not have to include this role yourself, the Django or PHP-FPM
roles do it automatically with the correct parameters.

The server logs are stored in
/var/log/nginx/<hostname>.(error|access).log.

You can have your own site template in your project directory,
for example virtualization/templates/nginx.j2 and extend one of the
default templates provided:

{% extends "default-site.j2" %}

{% block extra %}
 {{ super() }}

 # Here goes your custom Nginx rules
{% endblock %}

Then set the site_template parameter to nginx.j2 when including the nginx role (or any other that depend
on the nginx role):

roles:
 - { role: nginx, site_template: nginx.j2 }

If you want to use roles that include nginx, such as php-fpm, make sure you use the right parameter name (check the
docs):

roles:
 - { role: php-fpm, nginx_site_template: nginx.j2 }

Parameters

	site_template : The virtual host template to use, defaults to
“default-site.j2” for static websites only, possible values are:

	default-site.j2

	django-site.j2 Site template for Django

	drupal6-site.j2 Site template for Drupal6

	drupal7-site.j2 Site template for Drupal7

	drupal8-site.j2 Site template for Drupal8

	php-site.j2 Site template for generic PHP

	silex-site.j2 Site template for Silex

	symfony2-site.j2 Site template for Symfony2

	symfony4-site.j2 Site template for Symfony4

	index : what file do we use as an index ? defaults to ‘false’

	static_host : Which static host to use for Django projects ?
defaults to “false”.

	static_dir : Which static URL dir to use for Django projects ?
defaults to “false”.

	static_fs_dir : Which static filesystem dir to use for Django
projects ? defaults to “”.

	expire_time : Expiration time of static files, defaults to “6h”.

	web_directory : Root directory for the virtual host, defaults to root_directory.

	ssl : Whether to activate HTTPS vhost, defaults to false. If enabled, the generated CA will be copied to the
project directory.

Database Roles

MySQL

Install and set up a MySQL server and then create the configured user
and database.

The database administrative user is “root” with the “root” password.

This role must be included before the Django or PHP one if both are
present so that the correct extension and configuration could be made.

Parameters

	database_name : the name of the database to create, set in
parameters.yml

	database_user: the name of the user, defaults to the database
name

	database_password: the password of the user, defaults to the
database name

	mysql_version: the MySQL version to install, defaults to 5.6 and
supports 5.6, 5.7 and 8.0 (more info on
http://dev.mysql.com/downloads/repo/apt/)

PostgreSQL

Install and set up a PostgreSQL server and then create the configured
user and database.

This role must be included before the Django or PHP one if both are
present so that the correct extension and configuration could be made.

Parameters

	database_name : the name of the database to create, set in
parameters.yml

	database_user: the name of the user, defaults to the database
name

	database_password: the password of the user, defaults to the
database name

	database_template: the template to use, defaults to “template0”

	database_encoding: character encoding, defaults to UTF-8

	database_lc_collate: database collation, defaults to
en_US.UTF-8

	database_lc_ctype: database ctype, defaults to en_US.UTF-8

PostGIS

Install and set up a PostgreSQL server with the PostGIS extension enabled.

The postgres role is declared as a dependency and does not need to be activated explicitly in playbook.yml.

For each of the supported OS, this role installs the recommended PostgreSQL/PostGIS combination package:
- Debian 8 (Jessie): postgresql-9.4-postgis-2.1
- Debian 9 (Stretch): postgresql-9.6-postgis-2.3
- Ubuntu 14 (trusty): postgresql-9.3-postgis-2.1
- Ubuntu 16 (xenial): postgresql-9.5-postgis-2.2

MemCached

To be completed.

PHP Roles

PHP

Install PHP and various extensions : curl, intl, gd, imagemagick, …

The version can be changed and defaults to 5.6. All version are however
not available on all OS versions, an error message will be displayed by
Ansible if you chose an impossible combination.

Available versions are:

	Debian Stretch & Jessie: 5.6, 7.0, 7.1 and 7.2

	Ubuntu Trusty: 5.5, 5.6, 7.0, 7.1 and 7.2.

Development specific configuration options are also put into place, for
example to activate error outputting.

A database driver is also installed if one of the MySQL or PostgreSQL
roles was included before.

If you want to install xdebug, you’ll need to also add the specific role
: php-xdebug.

There are also roles for some more specific extension that could be
found below.

This role is automatically included by roles PHP-Apache and PHP-FPM, so
you should not include it yourself.

Parameters

	php_sury_apt_key_id: if you’re installing PHP on Debian >= jessie, this
parameter allows you to change the APT key id of the Sury repository.
Defaults to B188E2B695BD4743

	php_version : version to install, defaults to 5.6

	php_error_reporting : php error reporting, defaults to “E_ALL
| E_STRICT”

	php_assert_exceptions : php assert exceptions for 7.0 and above,
defaults to false

	php_max_execution _time** : script max exectution time,
defaults to “3600”

	php_memory_limit : memory limit, defaults to “4G”

	php_upload_max_filesize : maximal size of uploaded file,
defaults to “128M”

	php_date_timezone : timezone, defaults to “Europe/Zurich”

	php_default_charset : default charset, defaults to “UTF-8”

	php_default_socket_timeout : socket timeout, defaults to 120

PHP-Apache

Install the PHP mod for Apache along with Apache and PHP. You only need
to install this role, PHP and Apache will be automatically added as
dependencies. For details about PHP config, see above.

The default vhost template from the Apache role is used.

PHP-FPM

Install PHP-FPM so that you can use NGinx. You only need to install this
role, PHP and NGinx will be automatically added as dependencies. For
details about PHP config, see above.

You can change the site template used using the parameter defined below.
The templates can be found in the NGinx role.

Parameters

	nginx_site_template: template to use for site configuration,
defaults to “php-site.j2”

	nginx_index: index in nginx configuration, defaults to
“index.php”

PHP-XDebug

Installs the XDebug extension for PHP.

You can modify the config file /etc/php5/conf.d/20-xdebug.ini to
change the configuration and restart your Apache or PHP-FPM. XDebug is
also configured to trigger debugging and profiling in response to the
related query string or cookie, so you should be able to install a
browser extension to make it work this way.

Parameters

	xdebug_idekey: value of the xdebug.idekey setting, defaults to XDEBUG-DRIFTER.

PHP-Redis

Installs the Redis extension for PHP. Redis and PHP are installed as a
dependency.

Concerning Redis itself, the documentation is in the “System” section of
the documentation.

PHP-MemCached

Installs the MemCached extension for PHP. MemCached and PHP are
installed as a dependency.

Concerning MemCached itself, the documentation is in the “System”
section of the documentation.

Composer

Installs Composer, the PHP package manager. The PHP role is defined as a
dependency. You can set the install dir, a link in /usr/local/bin
will be set up whichever the install dir is so that composer can be
accessed globally.

If composer is already installed, this role will update it instead.

Parameters

	composer.dir : where to install the binary, default
“opt/composer”

PhiVE

Installs PhIVE support (Phar Installation and Verification Environment (PHIVE).
A link in /usr/local/bin will be set up so that phive can be accessed globally.

If PhIVE is already installed, this role will update it instead.

Parameters

	phive.dir : where to install the binary and the downloaded phar(s),
default to “opt/phive”

Python Roles

Python

Install Pip and Virtualenv along with dev dependencies. Dependencies to
build the Pillow package are also installed.

Both Python 2 and Python 3 are always installed, for example to facilitate
tests on multiple python version, the parameter below only change the
behavior of python related roles.

Parameters

	python_version: version of Python to use. Can be 2 or 3, defaults to “3”

	pip_version : the version of pip to install in the virtual environment. Defaults to 9.0.1.

	setuptools_version : the version of setuptools to install in the virtual environment. Defaults to 28.8.0.

	python3_install_from_source: whether to install Python from source (true) or use the distribution version (false). Defaults to false

	python3_source_version: Python version like 3.5.5, defaults to “3.6.5”

Virtualenv

Create a python virtual environment and install application requirements
via pip. The environment will also get pip-tools [https://github.com/jazzband/pip-tools] installed.

The virtual environment is automatically activated upon box login.

	pip_requirements : filename of the requirements file, defaults to
“requirements/dev.txt”

	env_root : directory where the virtual environment must be
created, defaults to “~/ENV”

	pip_requirements_dir : name of the requirements directory that contain the .in files. If set, Drifter will
run pip-compile on these files upon provisioning.

	pip_tools_version : the version of pip-tools to install in the virtual environment. Defaults to 1.8.2.

Django

Uses the virtualenv or the pipenv role (depending on the
django_use_pipenv parameter) to create and install a virtual
environment for Django.

Configure database access via environment variable and then run
migrations.

You need to include either to mysql or postgresql roles before
this one.

This role depends on the Virtualenv and NGinx roles. The NGinx role is
configured to use the “django-site.js” site template on the port “8000”.

Parameters

	
	django_rootroot directory of the Django project, default to

	the “root_directory” variable defined in parameters.yml

	django_use_pipenv: whether to use Pipenv to install requirements. Defaults to false.

Ruby Roles

Ruby

Install rbenv along with Bundler. Complete the installation with
the bundle install command if a Gemfile is found in the project root
directory.

Parameters

	ruby_version: this should be the exact version name (such as
2.3.3). Find a list of accepted version with rbenv install -l.
Default is 2.4.1

Rails

Simply add roles nodejs and ruby in your playbook.yml. Note that
rails will not be installed unless specified in your Gemfile.

Using mysql or postgres? then include mysql or postgresql role
before ruby.

Run server

You have two options. First, in the box, run rails server or puma, then open your browser on
http://{hostname}:3000

Second option is to add the nginx role with the rails template:

- { role: nginx, web_directory: "/vagrant/public", site_template: "rails-site.j2", proxy_port: 3000 }

Then you can just open http://{hostname}.

Java Roles

Java

Installs a Java Runtime Environment using the OpenJDK Debian package.

Parameters

	java_jre_version: JRE version to install, defaults to 7. Set
your version according to your needs and your Linux distribution.

	java_jre_package: default is openjdk-{{ java_jre_version }}-jre.

JDK

Installs a Java Development Kit using the OpenJDK Debian package.

Parameters

	java_jdk_version: JDK version to install, defaults to 7. Set
your version according to your needs and your Linux distribution.

	java_jdk_package: default is openjdk-{{ java_jdk_version }}-jdk.

Maven

Installs Maven via apt-get.

Solr

Install solr via the tarballs available on the Apache repository.

A specific user is created and solr is automatically started at boot
using supervisor.

You can choose any solr version (compatible with Java7) via download.
However the provided start command might need some adjustment.

To create a Solr core, use both the solr_core_name and solr_core_conf
parameter.

Parameters

Those parameters controls base feature for solr. There’s also a list
below of “internal” parameters that you’ll might need to tweak if you
want to use a version different than 4.X or 5.X

	solr_version: Solr version to install, defaults to 5.3.1. You
should be able to use all 5.X and 4.X version, but some tuning might
be needed.

	solr_base_dir: Solr base directory, this is not directly used
by the role, defaults to /opt/solr.

	solr_install_dir: Solr installation directory, defaults to {{ solr_base_dir }}.

	solr_config_dir: Solr configuration directory, defaults to
/opt/solr/server/solr.

	solr_port: defaults to 8984.

	solr_core_name: Create a new Solr core/index with such name; by
default no indexes are created. If this parameter is defined, solr_core_conf
must be defined as well.

	solr_core_conf: Specifies the Solr core/index configuration folder
to use for the index, it will be symlinked to the conf folder of the index.
Refer to the documentation [http://lucene.apache.org/solr/] for the file structure
required by Solr. Example: solr_core_conf=/vagrant/solr/conf.

ElasticSearch

To be completed

Webpack

Current Webpack version: 4.5.0

This role provides a pretty simple setup to handle assets (javascripts, stylesheets, images, fonts and SVG icons) through Webpack [https://webpack.js.org/] in your project.

It creates a webpack.config.js that is preconfigured to handle:

	Sass [https://sass-lang.com/] files to create stylesheets. Stylesheets are processed through Autoprefixer [https://github.com/postcss/autoprefixer] for browser compatibility and CSSNano [http://cssnano.co/] for optimisations.

	JavaScript files through Babel [https://babeljs.io/] with babel-preset-env to use next generation JavaScript today

	SVG icons through svg-sprite-loader [https://github.com/kisenka/svg-sprite-loader] and make a single sprite file out of it

	Images (svg, png, jp(e)g, gif, webp)

	Fonts (woff, woff2, eot, ttf, otf)

Installation

Once enabled, this role will create a webpack.config.js, a babel.config.js and a package.json that includes all the required dependencies by default.

Existing files (webpack.config.js, babel.config.js and package.json) will not be overridden. If those files already exist, the installation will be incomplete and might not work as expected.

Parameters

	webpack_directory: where should the webpack.config.js be created, defaults to {{ root_directory }}/

	webpack_create_config: Create the webpack.config.js & babel.config.js, defaults to true

	webpack_browserslist: Define Browserslist [https://github.com/ai/browserslist] in package.json, defaults to:

- "> 0.5%"
- "not op_mini all"
- "not dead"

Post-install

The default configuration expects a couple of things:

	The main JavaScript file to live at assets/scripts/common.js (not created by the role)

	All the assets to live in assets/… or in node_modules

	The SVG icons to be included in the sprite to live in assets/icons/

Other defaults:

	Built files are bundled into the dist/ folder

	Generated icons sprite is named icons.svg

You can change all these default values by editing the webpack.config.js file. If you need help, you should check out the Webpack config documentation [https://webpack.js.org/configuration/].

Default tasks

Development

npm start

Starts webpack-dev-server at example.lo:3000 [http://example.lo:3000], compile on-the-fly and reload the browser automatically. All requests not handled by webpack will be proxified to example.lo.

Replace example.lo by the “hostname” you set in the “parameters.yml”.

Notice that webpack-dev-server does not write the files to the disk. To debug which files are being served, go to example.lo:3000/webpack-dev-server [http://example.lo:3000/webpack-dev-server].

Production

npm run build

Will bundle all the assets, optimized for production, in the dist folder by default.

Loading assets

The default public path for bundled assets is /.

To load the main JavaScript file, use:

<script type="text/javascript" src="common.js"></script>

In development, CSS is automatically injected in a <style> tag by the JavaScript file that imported it. In production, you need to include the extracted file. For example, all the CSS required by the common bundle, would be extracted as common.css and should be loaded like this:

<link rel="stylesheet" type="text/css" href="common.css">

If you need help to import files such as CSS, images or fonts, take a look to the Webpack asset management guide [https://webpack.js.org/guides/asset-management/].

Gulp Role

Existing configuration files (Gulpfile.js, gulp.config.js,
webpack.config.js, package.json) will not be overridden.

	Install gulp globally in the Vagrant box

	Create a prefilled Gulpfile.js with useful tasks

	Watch & live reload with BrowserSync

	Compile Sass with Autoprefixer & source-maps

	Bundle JavaScript with Webpack, preconfigured with Babel
(optional)

	Lossless images optimization with ImageMin

	Create associated gulp.config.js and webpack.config.js

	Add the necessary dependencies to package.json (only if the file doesn’t exist yet)

After the first provisioning, you should edit the gulp.config.js and
webpack.config.js to match your project structure.

Parameters

	gulp_directory: where should the gulpfile be created, defaults
to <root_directory>/

	gulp_create_config: Create the gulp.config.js used by the default Gulpefile.js, defaults to
true

	gulp_use_webpack: Setup Webpack alongside Gulp, defaults to
true

	gulp_use_purescript: Add PureScript support to Webpack,
defaults to false

	gulp_browserslist: Define
Browserslist [https://github.com/ai/browserslist] in
package.json, defaults to:

- Last 2 versions
- IE 11

Default tasks

Watch & live reload proxy

Run BrowserSync, watch for changes in files, compile and reload browser
afterwards with:

npm start

Build for production

npm run build

Optimize images

For performance reason, this task is not included in the watch/build
tasks. You should run it manually according to your needs.

Optimize jp(e)g, png, gif & svg files with:

gulp images

Browser Roles

Browser roles are available for frontend testing. They all depend on
the role xvfb, which is a headless X server, except for Phantomjs.

Firefox

Install Firefox with Geckodriver to be used with selenium.

Parameters

	firefox_version: The version of Firefox to be installed, defaults to latest. Should be greater than 47.0. The
full list of supported versions can be found on the Firefox releases page [https://ftp.mozilla.org/pub/firefox/releases/].

Chrome

Install Chrome with Chromedriver to be used with selenium.

There are no parameters available for this one, as they don’t really provide
older versions. Therefore, always the newest Chrome browser will be installed.

PhantomJS

Install PhantomJS.

Parameters

	phantomjs_version: The version of PhantomJS to be installed, defaults to 2.1.1. The full list of supported
versions can be found on the PhantomJS releases page [http://phantomjs.org/releases.html].

Example usage with pytest and splinter

This is the recommended way to use those browser for testing in python with
pytest. pytest-splinter is a pytest plugin that provides easy access to
several webdrivers.

First, you have to install some packages via pip
(see Virtualenv for instruction on how to properly do
this):

	pytest

	pytest-splinter

	pytest-xvfb (When you want to use firefox or chrome)

In order to run your tests, you can simply invoke pytest. By default the
Firefox webdriver will be used, but it’s possible to change this with the
option –splinter-webdriver=chrome. More info available
on the pytest-splinter project page [https://github.com/pytest-dev/pytest-splinter].

Other Roles

Ruby

Install Ruby, Gem integration for Debian and dev dependencies.

Any Debian ruby package should then be also recognized as a Gem. You can
however continue to install Gems using the gem utility if you need a
specific version or an unavailable package.

NodeJS

Install NodeJS and NPM.

Parameters

	nodejs_version : The version to install, currently supports 11.x, 10.x, 9.x, 8.x,
7.x, 6.x, 5.x, 4.x, 0.12 and 0.10, default being 10.x.

	nodejs_distro : Is automatically set to either ‘jessie’, ‘stretch’, etc
based on available information, you can also put an Ubuntu codename here.

	nodejs_create_package_json: create a package.json file based on the
settings below during provisioning. Defaults to true.

	nodejs_package_json_template: template to use for the creation of the initial package.json file. Defaults to

package.json.j2, or package.json.gulp.j2 if you’re using the gulp role. See the
provisioning/roles/nodejs/templates directory for the list of available templates.

	nodejs_package_json_path: where should the package.json file be
created, defaults to <root_directory>/package.json

	nodejs_package_json_author: Author that should be put in the
package.json file, defaults to Liip AG

	nodejs_install_package_json: Run npm install on each provisioning. Defaults to true.

OpenLDAP

Install an OpenLDAP (slapd) server.

It will open the standard LDAP ports (389 for ldap://, 636 for
ldaps://), and the ldap-utils (shipping ldapsearch is also
installed.

Parameters

	ldap_organization : Fulltext organization name, defaults to
‘EvilCorp Ltd’

	ldap_organization_domain : Organization domain name, defaults
to evilcorp.example.com

	ldap_admin_password : Password of the original
cn=admin,dc=evilcorp,dc=example,dc=com user, defaults to ‘admin’

RMT - Release Management Tool

Install RMT in the box. Once done you must run php /home/vagrant/.config/composer/vendor/liip/rmt/RMT to init it for your project. Then for the next steps go to https://github.com/liip/RMT#usage

Redis

To be completed.

Gitlab CI

See CI.

PHP

PHP Debugging with Drifter & PHPStorm

As said earlier, the PHP role installs php-xdebug which is configured to
try to connect to any listener on the host.

If you are using Chrome and PHPStorm, debugging a script can be done by following these steps:

	Install the Xdebug helper chrome extension [https://chrome.google.com/webstore/detail/xdebug-helper/eadndfjplgieldjbigjakmdgkmoaaaoc]

	In your browser address bar, click on the little bug and select “Debug”

	In PHPStorm, open the “Run” menu and select “Start Listen for PHP Debug
connection”

	Reload the page in your browser

	A dialog should open in PHPStorm to ask you which file you want to debug,
choose the entry point of your application

CI

Integrating with Gitlab CI

(These instructions are specifically for the Liip Gitlab CI, but may be
used on other Gitlab CI’s as well)

To make it easy to run tests on the Gitlab CI runners, this packages
provides some general purpose scripts, so you don’t have to reinvent the
wheel all the time.

Setup

Using the gitlabci role

The automatic way. Just uncomment/add the folloing line in your
playbook.yml and the needed files will be created automatically on
the next provsioning (if they don’t exist already)

- { role: gitlabci }

It installs the following files (which should be added to git
afterwards)

.gitlab-ci.yml

The config file for Gitlab CI, it tells the CI what exactly to run

scripts/gitlabci.sh

The script called first by the gitlab runner. It updates the submodules
and then calls ./virtualization/drifter/ci/start.sh, which does
start vagrant, provisions it and calls your actual test script.

scripts/run_tests.sh

This is where your actually test calls go. This is run within your
vagrant box.

virtualization/provisionbuild.dat

To prevent provisioning on the ci runners all the time and save lots of
time, provisioning is only run, when this file changes. Therefore if you
change something in your provisioning scripts, also changes this file to
a different value (doesn’t matter which one, as long as it’s different,
but some kind of timestamp assures that it’s different)

If you don’t add this file to your project, then provisioning will be
run every time a ci build is started.

Be aware, that the CI deletes all files before each run, which are not
in your git repository. This eg. means that your vendor (if you use
composer) or node_modules folders are gone and not recreated, if
provisioning doesn’t go through. To still keep your important
directories, add this to .gitlab-ci.yml (see also
https://docs.gitlab.com/ce/ci/yaml/#cache for more details)

cache:
 paths:
 - bin/
 - vendor/
 key: sharedcache

Using a different folder than scripts/

If you prefer to install those files in a different folder than scripts/
you can add the following line in your parameters.yml, eg:

ci_scripts_folder: bin/

You can also adjust the files afterwards and uncomment the gitlabci role
in playbook.yml again (otherwise the files will be created again
after each provisioning)

Installing it manually

Copy the following files to some location (we have a /scripts/ folder,
but you can choose any directory)

SCRIPTS_FOLDER=./scripts/
cp virtualization/drifter/provisioning/roles/gitlabci/templates/gitlab-ci.yml .gitlab-ci.yml
cp virtualization/drifter/provisioning/roles/gitlabci/templates/gitlabci.sh $SCRIPTS_FOLDER/gitlabci.sh
cp virtualization/drifter/provisioning/roles/gitlabci/files/run_tests.sh $SCRIPTS_FOLDER/run_tests.sh
date +%Y%m%d%H%M%S > virtualization/provisionbuild.dat

And adjust .gitlab-ci.yml and $SCRIPTS_FOLDER/gitlabci.sh with
the corrects paths.

Add your tests

Put your test scripts into $SCRIPTS_FOLDER/run_tests.sh and they
should be run the next time you push something to gitlab (also make sure
you enable one of the go-based gitlab runners for your project, the ones
labeled with “go”, “shell”, and “lxc”)

You can also use any other file, but then adjust the env variable
CI_TEST_SCRIPT in $SCRIPTS_FOLDER/gitlabci.sh

Customization

Global project cache

On each runner, there’s a global project cache (shared with all
projects), which can be mounted, uncomment
export DO_GLOBAL_PROJECTS_CACHE=true in
$SCRIPTS_FOLDER/gitlabci.sh and that will be mounted into
/home/vagrant/.projects_cache. We for example add the php composer
cache dir there into /home/vagrant/.projects_cache/composer_cache,
so that not every project has to download the same project all over
again.

NPM would maybe be another canditate.

As this is shared with all projects, be careful where to put things
there.

Running and writing tests

The box pytest fixture allows you to get a full fledged Vagrant box (powered by LXC). Start by provisioning it, and then run commands in the box using the execute method:

def test_mysql_role_installs_mysql(box):
 box.provision(roles=['mysql'], parameters={'mysql_version': '5.7'})
 assert '5.7' in box.execute('mysql --version')

By default boxes use a specific Debian image (refer to tests/conftest.py for the exact distribution). You can specify the OS to use by passing the os argument to the provision method:

def test_mysql_role_installs_mysql_on_ubuntu(box):
 box.provision(roles=['mysql'], parameters={'mysql_version': '5.7'}, os='drifter/trusty64-base')
 assert '5.7' in box.execute('mysql --version')

To run the tests, start by installing the requirements:

pip3 install pytest pyyaml

And then execute the pytest command to run the tests. Test boxes are automatically discarded when the test run is over so you don’t have to clean anything.

Running a specific test / debugging

When a test fails, you can either re-run only the failing tests by passing the --lf option to pytest, or by using the -k option, followed by a part of the name of the test (for example pytest -k mysql_role_installs).

If you want to break at a failing test (for example to spawn a shell into the box and check what’s going on), add the --pdb option to pytest and, once you’re into pdb, retrieve the box id:

(Pdb) p box.box.get_lxc_id()
drifter-base-boxes_default_1519465979666_71466

Then run lxc-attach -n drifter-base-boxes_default_1519465979666_71466 to get a shell to the box. Once you’re done, use the q command to exit the debugger and destroy the box.

Passwordless tests running

To run the tests without any password (useful for CI integration), add the following to your sudoers (replace johndoe by your user name):

johndoe ALL=(ALL) NOPASSWD: /usr/binlxc-info -iH -n *, /usr/bin/lxc-start -n *, /usr/bin/lxc-stop -k -n *, /usr/bin/lxc-attach -n * -- *, /usr/bin/lxc-copy -s -B overlayfs -n * -N *, /usr/bin/lxc-stop -k -n *, /usr/bin/lxc-destroy -n *

The future ?

The framework will evolve as we use it on more projects. It is not the
goal to refrain you from doing anything. It will be improved as we need
it, the goal is to serve Liip teams !

What could be done if the need arise :

	Better installer with questions to automatically create the config
files instead of manual editing

Create boxes

Current way

Used for the current boxes available on
https://vagrantbox-public.liip.ch/

See https://gitlab.liip.ch/liip/drifter-base-boxes

Ansible

If you plan on using the ansible_local provisioner, ansible must
be installed in the box with at least a version of 1.9.0 otherwise the
roles won’t work.

Other way (older, may still work)

LXC

git clone https://github.com/team-rawbot/vagrant-lxc-base-boxes
cd vagrant-lxc-base-boxes
make jessie

If you’re getting errors when trying to install the base packages, check
your default LXC config (/etc/lxc/default.conf) and adapt it to your
setup:

lxc.network.type = veth
lxc.network.link = lxcbr0
lxc.network.flags = up

VirtualBox

Install veewee [https://github.com/jedi4ever/veewee/] and then:

git clone https://github.com/team-rawbot/veewee-definitions definitions
veewee vbox build liip-jessie64
veewee vbox export liip-jessie64

Migration instructions

Version 2.0

Ansible version

This version of Drifter requires Ansible version >= 2.7 installed. If you’re
using ansible_local = true in your Vagrantfile (which is the default),
you’ll need to make sure Ansible 2.7 is installed on the guest. To do that, open
the file virtualization/parameters.yml in your editor and add the
following:

ansible_version: 2.7.0

Then run the provisioning using vagrant provision, this should install the
correct Ansible version.

If you’re using ansible_local = false, you’ll need to make sure the Ansible
version installed on the host is at least 2.7. Instructions will depend on how
you installed Ansible (OS package manager, pip, etc).

Ansible templates location

The new Ansible version changed the way templates are discovered. You might have
templates paths set in your application, especially if you extend a Drifter
template in one of your templates (eg. {% extends "nginx/templates/default-site.j2" %}).

In such cases, you’ll need to replace the template path with only the template
name. For example nginx/templates/default-site.j2 would become
default-site.j2.

Version 1.0

Ansible version and ansible_local

Changes were made to the roles that requires to use of at least the
version 1.9.0 of ansible. This means Debian stable users have to
install ansible via the
Backports [https://backports.debian.org/Instructions/] if they don’t
want to use the ansible_local provisioner.

Also, the default is now ansible_local also for LXC and the Vagrant
version was bumped to 1.8.4 in this case to get rid of the bug that
caused issues before. This is the new recommanded provisioner.

Old Vagrantfile format

The support for the old Vagrantfile format has been removed in this
version. You should follow the steps detailed in the migration from
0.1.0 to 0.2.0 if you haven’t done it already.

Virtualbox and LXC URLs

It’s not possible to specify separate boxes for LXC and Virtualbox via
Drifter anymore. You need to move to the new JSON box format in order to
be able to do it. You can have a look at
https://vagrantbox-public.liip.ch/drifter-jessie64-base.json for an
example.

The lxc_box_name, lxc_box_url, vbox_box_name and
vbox_box_url have been removed in favor of box_name and
box_url.

Git

Git installation and configuration is now in its own role. It was added
to the playbook.yml.dist file, but existing project should also add
it to their playbook if they want to have git installed.

You should also have a look at the git role documentation inside the
System roles for the new features.

PHP roles names

redis-php and memcached-php roles have been renamed to follow
the already in place convention. You’ll now have to use php-redis
and php-memcached

Flash & Django roles

The flask and django roles now use the new virtualenv role.
This means the parameter for the requirements is now named
pip_requirements.

The default value for this parameter has also been changed to
“requirements/dev.txt”.

Version 0.1.0 to 0.2.0

In order for the framework to work correctly on Windows, we removed the
symlinks to the Vagrantfile stored in the submodule. The content of the
VagrantfileExtra.rb is now in the Vagrantfile at your project root. This
new file then loads a more complete Vagrantfile that is in the
submodule.

In order to migrate, follow those steps (commands assume you are in your
project root directory) :

	Remove the Vagrantfile symbolic link from the root :
rm -f Vagrantfile

	Copy the VagrantfileExtra.rb file to your root and rename it :
mv virtualization/VagrantfileExtra.rb Vagrantfile

	Add the get method to your CustomConfig class in the
Vagrantfile (copy the snippet below inside the class)

	Add the loading of the complete Vagrantfile to the project
Vagrantfile :
echo "load 'virtualization/drifter/Vagrantfile'" >> Vagrantfile

def get(name, default = nil) if self.respond_to?(name)
self.send(name) elsif default.nil? raise “[CONFIG ERROR] ‘#{name}’
cannot be found and no default provided.” else default end end

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Drifter

 		
 Requirements

 		
 Install Requirements

 		
 Debian Stretch (testing) and Ubuntu Xenial 16.04

 		
 Mac OS X

 		
 Windows

 		
 Usage

 		
 Customization

 		
 Contributing

 		
 System Roles

 		
 Base

 		
 Git

 		
 Parameters

 		
 Supervisor

 		
 Parameters

 		
 tmpfs

 		
 Parameters

 		
 SSL

 		
 SSH

 		
 Parameters

 		
 Redis

 		
 RabbitMQ

 		
 LogStash

 		
 Parameters

 		
 Webserver Roles

 		
 Apache

 		
 Parameters

 		
 NGinx

 		
 Parameters

 		
 Database Roles

 		
 MySQL

 		
 Parameters

 		
 PostgreSQL

 		
 Parameters

 		
 PostGIS

 		
 MemCached

 		
 PHP Roles

 		
 PHP

 		
 Parameters

 		
 PHP-Apache

 		
 PHP-FPM

 		
 Parameters

 		
 PHP-XDebug

 		
 Parameters

 		
 PHP-Redis

 		
 PHP-MemCached

 		
 Composer

 		
 Parameters

 		
 PhiVE

 		
 Parameters

 		
 Python Roles

 		
 Python

 		
 Parameters

 		
 Virtualenv

 		
 Django

 		
 Parameters

 		
 Ruby Roles

 		
 Ruby

 		
 Parameters

 		
 Rails

 		
 Run server

 		
 Java Roles

 		
 Java

 		
 Parameters

 		
 JDK

 		
 Parameters

 		
 Maven

 		
 Solr

 		
 Parameters

 		
 ElasticSearch

 		
 Webpack

 		
 Installation

 		
 Parameters

 		
 Post-install

 		
 Default tasks

 		
 Development

 		
 Production

 		
 Loading assets

 		
 Gulp Role

 		
 Parameters

 		
 Default tasks

 		
 Watch & live reload proxy

 		
 Build for production

 		
 Optimize images

 		
 Browser Roles

 		
 Firefox

 		
 Parameters

 		
 Chrome

 		
 PhantomJS

 		
 Parameters

 		
 Example usage with pytest and splinter

 		
 Other Roles

 		
 Ruby

 		
 NodeJS

 		
 Parameters

 		
 OpenLDAP

 		
 Parameters

 		
 RMT - Release Management Tool

 		
 Redis

 		
 Gitlab CI

 		
 PHP

 		
 PHP Debugging with Drifter & PHPStorm

 		
 CI

 		
 Integrating with Gitlab CI

 		
 Setup

 		
 Add your tests

 		
 Customization

 		
 Running and writing tests

 		
 Running a specific test / debugging

 		
 Passwordless tests running

 		
 The future ?

 		
 Create boxes

 		
 Current way

 		
 Ansible

 		
 Other way (older, may still work)

 		
 LXC

 		
 VirtualBox

 		
 Migration instructions

 		
 Version 2.0

 		
 Ansible version

 		
 Ansible templates location

 		
 Version 1.0

 		
 Ansible version and ansible_local

 		
 Old Vagrantfile format

 		
 Virtualbox and LXC URLs

 		
 Git

 		
 PHP roles names

 		
 Flash & Django roles

 		
 Version 0.1.0 to 0.2.0

_static/up.png

_static/up-pressed.png

